Asymptotic Behavior for Nonlocal Diffusion Equations

نویسندگان

  • EMMANUEL CHASSEIGNE
  • MANUELA CHAVES
چکیده

We study the asymptotic behavior for nonlocal diffusion models of the form ut = J ∗ u − u in the whole R or in a bounded smooth domain with Dirichlet or Neumann boundary conditions. In R we obtain that the long time behavior of the solutions is determined by the behavior of the Fourier transform of J near the origin, which is linked to the behavior of J at infinity. If Ĵ(ξ) = 1 − A|ξ| + o(|ξ|) (0 < α 6 2), the asymptotic behavior is the same as the one for solutions of the evolution given by the α/2 fractional power of the laplacian. In particular when the nonlocal diffusion is given by a compactly supported kernel the asymptotic behavior is the same as the one for the heat equation, which is a local model. Concerning the Dirichlet problem for the nonlocal model we prove that the asymptotic behavior is given by an exponential decay to zero at a rate given by the first eigenvalue of an associated eigenvalue problem with profile an eigenfunction of the first eigenvalue. Finally, we analyze the Neumann problem and find an exponential convergence to the mean value of the initial condition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalized Diffusion Phenomenon and Applications

We study the asymptotic behavior of solutions to dissipative wave equations involving two non-commuting self-adjoint operators in a Hilbert space. The main result is that the abstract diffusion phenomenon takes place, as solutions of such equations approach solutions of diffusion equations at large times. When the diffusion semigroup has the Markov property and satisfies a Nash-type inequality,...

متن کامل

Asymptotic Behavior of Solutions to Nonlinear Parabolic Equations with Nonlocal Terms

We consider nonlinear parabolic equations with two classes of nonlocal terms. We especially investigate the asymptotic behavior of the solutions as time goes to infinity.

متن کامل

Traveling Wave Solutions of Nonlocal Delay Reaction-diffusion Equations without Local Quasimonotonicity

This article concerns the traveling wave solutions of nonlocal delay reaction-diffusion equations without local quasimonotonicity. The existence of traveling wave solutions is obtained by constructing upper-lower solutions and passing to a limit function. The nonexistence of traveling wave solutions is also established by the theory of asymptotic spreading. The results are applied to a food lim...

متن کامل

Solution and Asymptotic Behavior for a Nonlocal Coupled System of Reaction-Diffusion

This paper concerns with existence, uniqueness and asymptotic behavior of the solutions for a nonlocal coupled system of reaction-diffusion. We prove the existence and uniqueness of weak solutions by the Faedo-Galerkin method and exponential decay of solutions by the classic energy method. We improve the results obtained by Chipot-Lovato and Menezes for coupled systems. A numerical scheme is pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006